Stereospecific Synthesis of a 1β-Methylcarbapenem Intermediate

KOZO ODA and TAKAHIDE NISHI*

Chemical Research Laboratories, Sankyo Company Limited, Hiromachi 1-2-58, Shinagawa-ku, Tokyo 140, Japan

(Received for publication January 30, 1997)

With the discovery of penicillin by A. FLEMING¹⁾ in the 1930s, the modern brilliant history of antibiotics began. Since then, many kinds of antibiotics, both natural and even more effective synthetic ones, have been developed. Above all, the β -lactam antibiotics, namely, penicillins, cephalosporins,²⁾ cephamycins (7-methoxycephalosporins),³⁾ and thienamycin (carbapenem)⁴⁾ have liberated human beings from many infectious diseases. However, the appearance of resistant bacteria has necessitated discovery of new types of antibiotics with a broader spectrum of activity to combat the resistant strains. As a result, 1β -methylcarbapenem was synthesized and reported to be a powerful β -lactam antibiotic by a Merck group.⁵⁾ This antibiotic resisted deactivation by β -lactamases produced by bacteria, prevented the production of β -lactamase itself, and also imparted chemical stability. Therefore, many chemists became eager to develop an effective synthetic route to this type of antibiotic and to find new analogs of 1β methylcarbapenem.

1β-Methylcarbapenem

We were also interested in finding a new effective route to 1β -methylcarbapenem, which has four contiguous chiral centers. We tried to elaborate these chiral centers stereoselectively, especially at the 1 and 5 positions in the carbapenem skeleton, by the reaction of (3R,4R)-3-[(1R)-tert-butyldimethylsilyloxy)ethyl]-4-acetoxy-2azetidinone (**3**)⁶⁾ with (E)-1-(tert-butyldimethylsilyloxy)-1-[(1-isoquinolylmethyl)thio]-1-propene (**2**). In this paper, we describe a highly diastereoselective preparation of a thioester (**4**) which is a 1β -methylcarbapenem intermediate.

The reaction of 4-acetoxyazetidinone with the O-enolsilyl ether of acetate was reported by BARRETT *et al.*⁷⁾ By analogy of this reaction, the reaction of **3** with the O-enoltrimethylsilyl ether of phenyl thioacetate using trimethylsilyl trifluoromethanesulfonate (TMSOTf) as a catalyst to give a 4-(phenylthiocarbonyl)methyl compound, which was easily converted to various kinds of alkylthioesters, was reported.⁸⁾ BARRETT's procedure was further applied to the reaction of **3** with various kind of O-enolsilyl ethers of thiopropionates^{9,10)} to prepare 1-methylcarbapenem intermediates.

We also attempted this reaction using the *O-tert*butyldimethylsilylenol ether of *S*-(1-isoquinolylmethyl) thiopropionate (1) to investigate the configuration of the 1-methyl chiral center. Treatment of 1 with lithium bis(trimethylsilyl)amide, and then *tert*-butyldimethylsilyl chloride in tetrahydrofuran-hexamethylphosphoramide at -78 °C yielded exclusively one product, (*E*)-1-[(*tert*butyldimethylsilyl)oxy]-1-[(1-isoquinolylmethyl)thio]-1-propene (2), in 62% yield by alumina column chromatography. The geometry of 2 was not determined in this stage. However, after the reaction of 2 with 3, the 1(*R*)-methyl thioester (4) was obtained. Reaction of the (*Z*)-isomer of silylenol ether 2 with 3 gave a diastereomeric mixture of 1(*R*)- and 1(*S*)-methyl thioesters

without exception.^{9,10)} Therefore, judging from this result, it was concluded that the geometry of 2 is E. Next, as mentioned above, the reaction of 2 with 4-acetoxy-azetidinone (3) using zinc chloride as a Lewis acid in dichloromethane at room temperature afforded a thioester (4) in 98% yield, stereospecifically.

Thus, we have shown that the 1-isoquinolylmethyl thioester of thiopropionic acid gives only the *E*-isomer of the silylenol ether of thiopropionate, and in subsequent reaction with 3, the *E*-isomer yields 1(R)-methyl thioester almost quantitatively, which is convertible to 1β -methylcarbapenem, according to the reported methods.

Experimental

General

Melting points were determined on a Yanagimoto micromelting point apparatus and were uncorrected. Optical rotation was recorded on a Perkin-Elmer 241 polarimeter. IR spectra were obtained on an A-102 spectrometer. Mass spectra were measured on a JEOL JMS-AX-505H mass spectrometer. ¹H NMR spectra were recorded with a JEOL EX-270 spectrometer for 270 MHz, and JEOL GX-400 spectrometer for 400 MHz using TMS as an internal reference.

S-(1-Isoquinolylmethyl) thiopropionate (1)

(i) A solution of 1-isoquinolic acid methyl ester (5.04 g, 26.9 mmol) in EtOH (10 ml) was poured into a suspension of $NaBH_4$ (3.06 g, 80.9 mmol) and LiCl (3.43 g, 80.9 mmol) in EtOH (60 ml) and THF (40 ml) with ice-cooling. After stirring for 4 hours, the reaction mixture was concentrated in vacuo, diluted with sat. NaCl, and extracted with EtOAc. The organic layer was dried over $MgSO_4$, filtered, and concentrated in vacuo to give a residue, which was separated on a silica gel column. Elution with hexane-EtOAc (2:1) gave 1-isoquinolylmethanol (1.68 g, 10.6 mmol, 39%), which was dissolved in CH₂Cl₂ (50 ml) containing Et₃N (2.21 ml, 15.8 mmol). (ii) To this solution was added MsCl (0.90 ml, 11.6 mmol) dropwise at 5°C. After 1 hour, the reaction mixture was diluted with CH₂Cl₂ (100 ml), washed with sat. NaHCO₃, dried over MgSO₄, filtered, concentrated in vacuo, and separated on a silica gel column. Elution with hexane - EtOAc (3:1) gave a mesylate (2.18 g, 87%). (iii) To a solution of this mesylate (2.16 g, 9.10 mmol) in DMF (50 ml) was added AcSK (1.25 g, 10.9 mmol) at 5°C with stirring. After 30 minutes, the reaction mixture was diluted with EtOAc, washed with sat. NaHCO₃, dried over MgSO₄, filtered, and concentrated in vacuo to give

a residue, which was separated on a silica gel column. Elution with hexane - EtOAc (3:1) gave S-(1-isoquinolyl)methyl thioacetate (1.98 g, quantitatively), which was dissolved in MeOH (20 ml). (iv) To this solution was added 4.40 ml (22.8 mmol) of 28% solution of NaOMe in MeOH, and the solution was stirred for 1 hour with ice-cooling. The reaction mixture was concentrated in vacuo, diluted with water, adjusted to pH 7 with 1 M HCl, and extracted with EtOAc. The organic layer was dried over MgSO₄, filtered, and concentrated in vacuo to give a residue, which was dissolved in CH_2Cl_2 (20 ml). (v) To this solution was added Et₃N (1.40 ml, 10.0 mmol) and then EtCOCl (0.87 ml, 10.0 mmol). After stirring for 1 hour at 5°C, the reaction mixture was diluted with CH₂Cl₂ (50 ml), washed with sat. NaHCO₃, dried over MgSO₄, filtered, and concentrated in vacuo to give a residue, which was separated on a silica gel column. Elution with hexane-EtOAc (3:1) gave S-(1isoquinolylmethyl) thiopropionate (1.71 g, 81%). MS: m/z 231 (M⁺). ¹H NMR (400 MHz, CDCl₃) δ 1.22 (3H, t, J=7Hz), 2.64 (2H, q, J=7Hz), 4.84 (2H, s), $7.56 \sim 7.72$ (3H, m), 7.83 (1H, d, J = 7 Hz), 8.17 (1H, d, J = 7 Hz), 8.45 (1H, d, J = 6 Hz).

(*E*)-1-[(*tert*-Butyldimethylsilyl)oxy]-1-[1-(isoquinolylmethyl)thio]-1-propene (**2**)

To a solution of 1,1,1,3,3,3-hexamethyldisilazane (1.81 ml, 8.58 mmol) in THF (20 ml) and HMPA (1.49 ml, 8.56 mmol) was added *n*-BuLi (4.91 ml, 7.86 mmol, 1.6 м in hexane) at -78° C. The solution was stirred for 10 minutes, and tert-butyldimethylsilyl chloride (2.16g, 14.3 mmol) and Et₃N (2.99 ml, 21.4 mmol) were added. After stirring for 10 minutes at -78° C, a solution of 1 (1.65 g, 7.15 mmol) in THF (5 ml) was added dropwise. After stirring for 10 minutes, the temperature was elevated to room temperature, and the reaction mixture was diluted with pentane, washed with sat. NaHCO₃, dried over MgSO₄, filtered, concentrated in vacuo, and separated on an alumina column. Elution with hexane-EtOAc (4:1) gave 2 (1.52 g, 62%) as a pale yellow oil. ¹H NMR (270 MHz, CDCl₃) δ 0.24 (6H, s), 1.01 (9H, s), 1.51 (3H, d, J=7 Hz), 4.51 (2H, s), 4.98 (1H, q, J=7 Hz), 7.53 ~ 7.69 (3H, m), 7.81 (1H, d, J=7 Hz), 8.18 (1H, d, J=7 Hz), 8.45 (1H, d, J=6 Hz).

 $\frac{(3S,4S)-3-[(1R)-(1-tert-Butyldimethylsilyloxy)ethyl]}{4-[(1R)-1-((1-isoquinolylmethyl)thiocarbonyl)ethyl]-2-azetidinone (4)}$

To a solution of 2 (529 mg, 1.53 mmol) and 3 (200 mg, 0.70 mmol) in CH_2Cl_2 (5 ml) was added $ZnCl_2$ (208 mg,

1.53 mmol) with ice-cooling under nitrogen with stirring. The mixture was stirred for 12 hours at room temperature, diluted with CH₂Cl₂ (50 ml), washed with sat. NaHCO₃, dried over MgSO₄, filtered, and concentrated in vacuo, and separated on a silica gel column. Elution with hexane-EtOAc (1:1) gave 4 (315 mg, 98%) as a white solid. mp $127 \sim 129^{\circ}$ C (from *i*-Pr₂O); MS: m/z 459 $(M^+ + 1)$. $[\alpha]_D^{20} - 33.2^\circ$ (c 0.5, MeOH). Anal. Calcd for C₂₄H₃₄N₂O₃SSi: C 62.84, H 7.47, N 6.11, S 6.99. Found: C 62.88, H 7.51, N 5.95, S 7.06. IR (KBr) cm⁻¹ 1763, 1719 and 1684; ¹H NMR (400 MHz, CDCl₃) δ 0.66 (6H, s), 0.86 (9H, s), 1.11 (3H, d, J=6 Hz), 1.29 (3H, d, J = 7 Hz), 2.93 (1H, m), 3.02 (1H, dd, J = 2, 4 Hz), 3.92 (1H, dd, J=2, 6 Hz), 4.17 (1H, m), 4.83 (2H, s), 5.88 $(1H, bs), 7.58 \sim 7.74 (3H, m), 7.85 (1H, d, J = 8 Hz), 8.13$ (1H, d, J=8 Hz), 8.44 (1H, d, J=5 Hz).

References

- ABRAHAM, E. P.: Fleming's discovery. Reviews of Infectious Diseases 2: 140~141, 1980
- ABRAHAM, E. P.: A glimpse of the early history of cephalosporins. Reviews of Infectious Diseases 1: 99~ 105, 1979
- 3) NAGARAJAN, R., L. D. BOECK, M. GOLMAN, R. L. HAMILL, C. E. HIGGINS, M. M. HOEHM, W. M. STARK & G. J.

WHITNEY: β -Lactam antibiotics from *Streptomyces*. J. Am. Chem. Soc. 93: 2308 ~ 2310, 1971

- KAHAN, J. S.; F. M. KAHAN, R. GOEGELMAN, S. A. CURRIE, M. JACKSON, E. O. STAPLEY, T. W. MILLER, A. K. MILLER, D. HENDLIN, S. MOCHALES, S. HERNANDEZ, H. B. WOODRUFF & J. BIRNBAUM: Thienamycin, a new β-lactam antibiotic. I. Discovery, taxonomy, isolation, and physical properties. J. Antibiotics 32: 1~12, 1979
- SHIH, D. H.; F. BAKER, L. CAMA & B. G. CHRISTENSEN: Synthetic carbapenem antibiotics I. 1-β-methylcarbapenem. Heterocycles 21: 29~40, 1984
- SHIOZAKI, M.; N. ISHIDA, T. HIRAOKA & H. YANAGISAWA: Stereocontrolled synthesis of chiral intermediates of thienamycin from threonines. Tetrahedron Lett. 21: 5205~5208, 1981
- BARRETT, A. G. & P. QUAYLE: Concise syntheses of 4-(arylcarbonylmethyl) azetidin-2-ones and related systems. J. Chem. Soc. Chem. Commun. 1981: 1076~1077, 1981
- MARUYAMA, H.; M. SHIOZAKI & T. HIRAOKA: A synthesis of a versatile intermediate leading to thienamycin analogs. Bull. Chem. Soc. Jpn. 58: 3264 ~ 3270, 1985
- 9) SHIBATA, T.; K. IINO, T. TANAKA, T. HASHIMOTO, Y. KAMEYAMA & Y. SUGIMURA: Synthetic study of 1-substituted carbapenem antibiotics. Tetrahedron Lett. 26: 4739~4742, 1985
- 10) MARTEL, A.; J.-P. DARIS, C. BACHAND, J. CORBEIL & M. MENARD: 2-Picolyl thioesters: a useful synthon for the preparation of $1-\beta$ -methyl carbapenem intermediates. Can. J. Chem. 66: 1537~1539, 1988